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Quantum Phase Transitions and the Breakdown of Classical General Relativity 
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E. Hohlfeld, R. B. Laughlin, and D. I. Santiago 
Department of Physica, Stanford University, Stanford, California 94905 

(December 26,2000) 

It is proposed that the event horizon of a black hole is a quantum phase transition of the vacuum 
of space-time analogous to the liquid-vapor critical point of a bose fluid. The equations of classical 
general relativity remain valid arbitrarily close to the horizon yet fail there through the divergence of 
a characteristic coherence length (. The integrity of global time, required for conventional quantum 
mechanics to be defined, is maintained. The metric inside the event horizon is different from that 
predicted by classical general relativity and may be de Sitter space. The deviations from classical 
behavior lead to distinct spectroscopic and bolometric signatures that can, in principle, be observed 
at large distances from the black hole. 

PACS numbers: 04.70.Dy,05.70.JkJ05.30.Jp,64.60.Ht 

I. INTRODUCTION 

Quantum mechanics is incompatible with classical gen- 
eral relativity. While there are many ways of articulat- 
ing the problem, all reduce in the end to the absence of 
universal time required for the many-body Sclw6dinger 
equation 

to make sense. This equation is the logical underpin- 
ning of quantum field theory and statistical mechanics, 
and thus of our microscopic understanding of the entire 
natural world outside gravity. General relativity predicts 
that certain stars evolve at the end of their lives into 
black holes characterized by surfaces at which time, as 
measured by a clock at infinity, stands still. Gravity is 
well-behaved at this surface, in that a free-falling ob- 
server passes through in finite proper time without being 
ripped apart by tidal forces, but quantum mechanics is 
not. The paradox is fundamental. It has led to pro- 
posals for revising the laws of quantum mechanics' and 
to speculations that black holes may destroy quantum 
information2. 

In this paper we propose a resolution of this problem 
that is fully quantum-mechanical and is based on prin- 
ciples that can be tested in the laboratory. The essence 
of the idea, illustrated in Fig. 1, is that the black hole 
event horizon is a continuous quantum phase transition 
of the vacuum of space-time roughly analogous to the 
quantum liquid-vapor critical point of an interacting bose 
fluid. In such systems the classical description of the 
Hvacuum" on either side of the horizon fails on length 
scales smaller than a characteristic length (, a quantum- 
mechanical quantity, that diverges at the horizon. The 
classical equations remain exactly valid up up to the hori- 
zon, but only in context of a special, unphysical order of 

limits. In a real experiment done at finite size the di- 
verging length t will eventually reach this size and cause 
the classical description of the experiment to fail. In the 
bose fluid the approach to the critical surface is signaled 
by the vanishing of the speed of sound. In a black hole 
the approach to the horizon is signaled by the Mnishr 
ing of the time dilation factor. An apt analogy between 
the two thus requires the time dilation to increase inside 
the event horizon-at odds with the prediction of classical 
general relativity. 
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FIG. 1. Prototype time dilation factor -y(r) in the vicinity 

of a black hole event horizon. 

The notion that general relativity might be an emer- 
gent property in a condensed-matter-like quantum the- 
ory of gravity has a long histo$. In 1968 Sakharov ob- 
served that space-time in Einstein gravity was similar to 
to stressed matter4. In Sakharov's model there is no or- 
der parameter similar to that in superfluids, but one with 
such order parameters has been proposed5. In 1982 Un- 
ruh observed a close analogy between sound propagation 
in background hydrodynamic flow and field propagation 
in curved space-time6. Following Unruh's lead, models 
for a black hole based on superfluid flow of 3He7 and 
atomic bose condensates* have been put forward. Mo- 
hazzab has recently proposed an analogy between black 
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hole event horizons and the normal-superfluid interface' 
of 'He. Ueda and Huang have noted the similarity be- 
tween black hole collapse and the instability of atomic 
bose condensates to attractive forces'O. 

However, our proposal differs from this recent work in 
the key respect that it ascribes black hole behavior at the 
event horizon to a quantum ground state. This enables 
us to argue for the first time that collective effects are 
the comt  explanation for the puzzling behavior of black 
holes-and by implication the apparent incompatibility of 
quantum mechanics and general relativity. 
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11. BOSONIC MATTER 

- 
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The simplest kind of matter is 'He and substances like 
it". It is a collection of N atoms obeying Eq. (1) with 

subject to the condition that be symmetric under in- 
terchange of any two of its arguments rl, ..., rN. The 
ground state is the energy eigenstate 

with the lowest eigendue EO. The zero-temperature 
equation of state of the matter is the functional depen- 
dence of on various parameters in the hamiltonian, 
such as the confinement volume V or atomic mass M. 
This dependence is smooth and continuous except at 
quantum phase transitions, where it is singular. 

The properties of 'He demonstrate that both zero- 
temperature phase transitions of bosonic matter and the 
liquid phase exist12. 4He is a solid at pressures above 
25 atmospheres and zero temperature. As the pressure 
is dropped below 25 bar it melts into a liquid with un- 
measurably small quantum vapor pressuremeaning that 
it puddles at the bottom of a container larger than itself 
and will not evaporate at zero temperature. This liquid, 
like all the fluids we will consider here, is much colder 
than the boseeinstein condensation temperature and is 
thus a pure superfluid. 

The vapor phase of bosonic matter also exists in nature 
in the newlydiscovered "boseeinstein condensates"-a 
name that is somewhat misleading as these systems ex- 
hibit a finite sound speed". They are also metastable 
excited states rather than ground states, and are more 
aptly called supersaturated quantum vapors. Their be- 
havior is fully consistent with Bogoliubov's original d e  
scription of superfluid broken symmetry in *He, which 
was based on weak repulsive potentials and was actually 
a description of the quantum gad3. 

The nature of the zero-temperature liquid-vapor tran- 
sition in these systems is, however, controversial. In 1977 
Miller, Nosanow and Parish14 performed a realistic vari- 
ational study of lennard-jones fluids and found that the 
critical point could not be reached by varying pressure. 
They concluded from this that bose fluids never have 
a conventional critical point. However there is no gen- 
eral principle leading to that conclusion, and more recent 
studies based on different model  assumption^'^ find be- 
havior more consistent with that of classical fluids. We 
will proceed on the assumption that the models predict- 
ing a conventional critical point were solved correctly, 
and that the result of Miller, Nosanow and Parrish was 
specific to the class of model they were studying. 

The quantum liquid-vapor transition, or something 
like it, may have been seen experimentally in these 
condensatesls*lT. The relevant experiments exploit hy- 
perhe scattering resonances in certain isotopes to tune 
the s-wave phase shift through zero by means of a mag- 
netic field. When Cornish et aZ." did this with 8sRb they 
found the ball of vapor to first contract - as expected if 
its pressure were being reduced - and then explode par- 
tially, leaving a remnant condensate with a "halo" of hot 
gas. Jnterpretation of this effect as a phase transition 
is complicated by the metastable nature of the conden- 
sate and increased rate of recombination into the true 
ground state that occurs at high densities. However it 
occurs abruptly at the place where such a transition is 
expected and is preceded by a dramatic softening of the 
compressibility. 

- .  
.e. . . . 
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VIV, 
FIG. 2. Phenomenological equation of state defined by Eq. 

(6) for various values of the parameter c near the critical value. 
The dotted lines indicate the Maxwell loops. 

111. MODEL HAMILTONIAN 

Let us now proceed to construct a model for the quan- 
tum liquid-vapor transition. The simplest realization of 
this transition in a classical fluid is the Van der Waals 
equation of state18 
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(5) 
a 

(V - b)(P + v) = NkBT . 

By analogy with this let us consider the phenomenologi- 
cal quantum equation of state 

shown in Fig. 2. This is generated in the mean-field 
approximation from the field theory 

with 1$12 interpreted as the density p = N/V and 

U = - h ( -  c v + & )  -- a 

24v v- lh  3 v 4  ' 

After canonical quantization this becomes equal to Eq. 
(2) with a short-range multicodgurational potential 
U. At zero temperature this system exhibits the phe  
nomenon of bose condensation-i.e. acquires a superfluid 
order parameter t+4 with low-energy dynamics described 
by the extremal condition 

This is the Gross-Pitaevskii equationlo. The particle 
density and current density, defined by 

h 
1+12 = P PV = 2Mi(+*V+ - W+*) , (10) 

then satisfy hydrodynamic conservation of particle num- 
ber and momentum20 

9 + V . ( p v ) = O  M&7v)+VP=O 6 . (11) 
6t 

The quiescent state of the fluid is described by the uni- 
form solution q50 satisfying 

U'(l+Ol2) - p+o = 0 (PV + Eo = p) (12) 

The partide density is fixed by suitably adjusting the 
chemical potential p. Small perturbations to this solution 

$ = $0 + a h  + i  (ah (13) 

then satisfy 

a(h!'R) ti2 h- = --V(Sh) 
at . 2M 

ti2 2B -ti----. - - --v2(6&) + -((ah) , (15) 
& 2M P 

to linear order and thus give the dispersion relation 

I 
(116) 

for compressional sound. This identifies 6 = h/Mu. y 
the length scale for the failure of hydrodynamics. TJlis 
same scale appears is the Bogoliubov solutionl3. 

As usual the region of negative compressibility is an In- 
accurate description of liquid-gas phase separation and is 
replaced with a Maxwell construction. This is discuded 
more thoroughly in Appendix A. For this reason them is 
one and only one point in the diagram where the bhlk 
modulus B = -V(aP/BV) is zero, namely the critical 
point. 

.............. 
Liquid 

Z 1 . . . . . . , 

P 

1 . . . . . . . , 

I. 
v. 

FIG. 3. Illustration of thought experiment in which pres- 
sure increases toward the bottom of a tank of quantum fluid. 
Sound emitted from a transducer on the side of the tank is re- 
fracted downward toward the critical surface where the round 
speed collapses to zero. The wave fronts shown are for a so- 
lution of %. (20) with the pressure and sound speed ptof3es 
given by Q. (25) and plotted on the right. The qu- < ntum 
pathologies in this case are exactly the same as thw! at a 
S c h d i l d  black hole. 

TV. CRITICAL SURFACE EVENT HORIZON 

Let us now imagine a thought experiment, illusxated 
in Fig. 3, in which a tall tank on the surface of the earth 
is filled with a quantum fluid characterized by a critical 
equation of state. The pressure increases toward t k  e bot- 
tom of the tank due to gravity and at some critical depth 
reaches, and then surpasses, the critical pressure. Sound 
waves are refracted toward this surface just as light is 
refracted toward a black hole horizon and for thd! same 
reawn, namely that the propagation speed measured by 
a clock at infinity vanishes there. For the specific equa- 
tion of state defined by J3q. (6) with c = 8a/27b,l which 
reduces near the critical point to 

Pc = - a uc = J-". ~ (17) 
1 

27b2 MPC 
Pc = 
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- - 1 ~ 1 2 ( - - 1 ) 3  P P , 
Pc Pc 

we have 

(18) 
is well known and has been studied extensively by light 
scattering21. 

Let us now consider this effect in detail. At the critical 
point the Lagrangian is effectively 

near the critical surface at x = 0. Small density fluctua- 
tions p + p + 6p then propagate according as i.e. a nonrelativistic hose gas with 

earity. The corresponding quantum Hamiltonian is 
highdrder nonlin- 

(20) 
B2 (!P) v - [UZ V(6p)J = - 

B t 2  - 
This is qualitatively the same as the scalar wave equation 

one obtains from 

- ( f i g W - )  8 84 = o  
8xfi 82" 

using the gravitational metric x.. x ds2 = gfi,dZpdx" = dZ2 + dy2 + dx2 - u;dt2 . (23) 

The particular power law with which the sound speed 
vanishes in this experiment is not important and can eas- 
ily be modified. For example one can imagine weakening 
the downward force on the atoms according to the rule 

(24) FIG. 4. Lowt-order scattering processes in the critical 
region. The process on the left causes mas renormalization 
and decay at zero temperature. The one on the rinht causes 

g = go(1 -e- w=) , 

so that - 
critical opalescence. 

The important decay and scattering processes are shown (25) 

in Fig. 4. The first correction to the the particle self- 
energy renormalizes The analogy with gravity is more obvious in this case 

because the metric just outside the event horizon of a and gives an imaginary part 
Schwarzschild black hole can be written in this form with 
u, = 2 r / 4 G M .  

V. QUANTUM-CRITICAL DISSIPATION -1 

2M In contrast to the case of classical gravity, however, the 
paradoxes of sound propagation near the critical surface 

ceases to make sense near the horizon because the princi- 
des of hydrodynamics fail on length scales smaller than 

have a simple quantum-mechanical resolution: Sound h2$ h2q2 
= -- 16r2 ( M ) 3 ( 5 ) 2 ( r W -  - ti2 ~ ) ~ 8 ( t u J -  -) 6 M  . (28) 

the corrtiation length t = h / M U , d  time scales longer 
than (/uLl. At the horizon both diverge to infinity. A 
sound quantum with fixed frequency w propagating to- 

The decay rate for a boson of energy tiw = h2q2/2M is 
thus 

(29) 
ward the horizon reaches the point at which "3 v6/f in h 1 M P c 2  - = -(-)3(-) ( b ) 2  . 
finite time and decays there into the soft excitations of 7 3n2 pf 
the critical point. These are dense, so most of the energy 
thermalizes. This effect has never been observed experi- 
mentally, but its classical analogue, critical opalescence, 

This implies that the free boson becomes more and more 
sharply defined as the energy is lowered, so that in the 
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low-energy limit one retrieves the ideal noninteracting 
bose gas22. 

Let us now consider the several experimental signa- 
tures of this effect: 

I ' 1  

0 0.5 1 
WTO 

1 10-5 100 
Q/Qo 

0 

FIG. 5. Top: Reflectivity as a function of LOTO pre 
d i d  by Eq. (31) for the case of 9/80 = lo", with 
QO = (2M/hm)'/'. The intdace thickness is assumed to 
be of order 1/Qo to make the resonances visible. The dotted 
line is the Q + 0 limit described by Eq. (32). Bottom: Dis- 
persion relation of interface bound states plotted both linearly 
(left) and semi-logarithmically (right). 

A. Reflectivity 

At very low frequencies a phonon impinging on the sur- 
face at zero temperature is coherently reflected or trans- 
mitted depending on its energy. Solving the equation 

a24 ti ti2 
h2- = (-)2V * (z2V4) - , (30) 

8t2 To 

where 1/70 = 8 4 8 2  (cf. Eqs. (14) and (15) with = 
84/82), we obtain the reflection coefficient shown in Fig. 
S. The momentum component Q in the plane, which is 
conserved, acts like a mass and allows the phonon to be- 
come trapped at certain energies twn. These produce 
transmission resonances that become narrower and nar- 
rower with increasing thickness of the interface. The po- 
sitions of these resonances depend on M and may thus be 
used spectroscopically to determine this parameter. For 
Q >> Qo they occur at the harmonic oscillator values 

Normal incidence (Q + 0) is a singular point where the 
discrete energies collapse to a continuum characterized 
by the reflectivity 

l R I 2  = [ ~sh-2(xJ(wro)2 - 114) w70< wro > 'I2] 112 . (32) 

This result is discussed further in Appendix B. 

0.1 I I I 

0 0.1 0.2 0.3 0.4 

FIG. 6. Differential cross-section given by Eq. (33) for in- 
elastic scattering of sound from a critical surface as a func- 
tion of scattered frequency w' for values of B ranging from 
0 to a/2. The maximum value of W'IW for sound reflected 
normally (0 = 0) is 119. 

w'/w 

B. Inelastic Scattering 

The horizon is opaque to high-frequency sound waves 
impinging upon it and inelastically scatters about 118 of 
them back out with a strong red shift. When To/r > 1, 
where T is given by Eq. (29), incoming phonon decays 
with 100% probability, and one (but not two) of the three 
bosons thus generated can escape back out the surface. 
This gives a differential cross section per unit area A to 
scatter sound of fiequency w back in solid angle dl at 
frequency w' < w of 

433:[1- 32 - 2&cos(8)] , (33) 
27A -- -- du 

dfldw' 16n2w 

where 3: = w'/w. This is plotted in Fig. 6. Thus the hori- 
zon is a blackbody that fluoresces red. It is an extremely 
efficient thermalizer of energy, however. 

1 

0.5 

0 
0 1 2 3 4 

(M/kBT) 1/22/To 
FIG. 7. Thermal energy per unit volume defined by Eqs. 

(34) and (35) for a critical surface at temperature T. The 
divergent planck law is shown for comparison. 

C. Heat Capacity 

The horizon becomes much more dissipative at low 
frequencies if the critical region is hot. At  tempera- 
tures below the bose condensation temperature (kBTB N 

ti2p2I3/2M) the absorption rate for a phonon of energy 
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E << kBT is roughly Eq. (29) with kBT substituted 
for E (cf. Fig. 4). This effect is equivalent to classical 
critical opalescence. Its heat capacity is large but finite. 
The energy density a distance z away from the interface 
is the following constraints: 

made outside the black hole, the simplest guess is that it 
is literally like the liquid-vapor transition, meaning that 
the Einstein field equations, like the laws of quantum 
hydrodynamics, are valid in both phases. Thus we have 

1. The equations of classical general relativity outi'de 
(34) the black hole are obeyed everywhere except t 4, e 

-=-  

critical surface. A 
where wq is given by Eq. (16) with u, = %/TO. This is 
plotted in Fig. 7. It may be seen to limit properly as 
Z - b O t o  

2. At the critical surface the vacuum of space-time 
reorganizes itself so as to keep global time defined. 

3. The local properties of the vacuum just inside the 
critical surface are indistinguishable from those just 
outside. 

(35) 
Eo M 

V ti2 

Thus the criticality cuts off the divergence in the planck 
law E/V = (a2/30)(k~T)4(~0/hz)3.  

- = 0.128 (-)3/2(kBT)6/2 . 

4. There are no scales other than the mass. 

VI. DIMENSIONAL ANALYSIS 

It is unfortunateIy not the case that knowledge of the 
mechanical analogues of c and G is mtfficient to determine 
the correlation lenth &. The fluid possess a dimensionless 
parameter r] = &3p that cannot be determined by any 
low-frequency measurement. There is indeed a unique 
combination of the sound speed u, , mass density Mp,  and 
ti that has units of length, but this cannot be associated 
with & without assuming that r;l= 1, which need not be 
the case. 

The analogue of Newton's constant G in the fluid is the 
inverse mass density 1/Mp. There is no inverse-square 
attraction between two masses in the superfluid be- 
cause its monopolar nature makes this interaction short- 
ranged. However, we can sensibly compare the radiation 
produced by rotating quardupoles. A pair of masses M 
orbiting around each other at separation e at frequency 
00 radiate gravitational power 

5. The topology is consistent with the collapse of or- 
dinary matter. 

The physical indistinguishability of the quantum fluids 
on either side of a liquid-vapor critical surface is a strong 
constraint on any gravitational analogue because it r e  
quires the relativity principle to operate on both sides. 
This, in turn, requires that a metric be dehed and obey 
equations something like the Einstein field equations on 
both sides. The considerations at the critical surface then 
extrapolate to the entire bulk interior, since an inability 
to do so wodd imply a second phase boundary. If the 
metric exists in the interior of the black hole then one can 
measure its curvature and compute from this the Einstein 
tensor. This must be red stress-energy, because if it is 
not then the space-time has a local property distinguish- 
ing it from the space-time outside. 

Let us now write these ideas formally. The most gen- 
eral spherically symmetric metric is24 

da2 = eAdr2 + r 2 [ a 2  + ~in'((s)d$~] - eydt2 . (38) 

2 G  
15 t3 

P=--M2Pw: . (36) 
The corresponding stress-energy tensor is 

Two analogous masses in the fluid radiate sound power 

p=-- 15a vs Mp M2e4W; . (37) 

These masses are polarons formed around an extremely 

1 
Rll - 2g11R = - d / r  - (1 - eX)/r2 (39) 

light impurity, such as an electron in 4He23. This result 

By analogy, then, the correlation length of gravity need 1 (40) 
A'u' un t/ - A '  +-+- is discussed in more detail in Appendix C. 2 -A ut/ 

(3- 4 4 2r 
= -r e 

not be the planck length tP = (tiG/2)'I2. 

1 
&o - 2gooR = e"-X[-X'/r + (1 - eX)/r2] . (41) 

Outside the black hole the Einstein equations require 
this to be zero, which gives the Schwarzschild solution 
r(r) = e" = e-X = 1 - 2M/r. The choice of integra- 
tion constant 2 M  determines the location of the event 

VII. INTERIOR METRIC 

Let us now consider the implications of this analogy 
for real gravity. While it is generally impossible to infer 
the properties of the second phase from measurements 
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t o  
horizon. If we then require the horizo be a critical sur- 

horizon as well, but converging to zero with the opposite 
slope. This, in turn, requires the presence of matter with 
negative pressure inside the black hole. (d and 1 - ex 
are both negative at the horizon but must limit to zero at 
the origin.) The matter must also naturally resist falling 
into the minimum of the gravitational potential, which 
necessarily lies at the horizon. These properties are so 
difficult to achieve with any kind of conventional mat- 
ter the only reasonable choice is a nonzero cosmological 
constant. Thus inside the black hole we must have 

face we must also have ey = e-x imme 3 iately inside the 

where the constant M is picked to match the boundary 
condition at r = 2 M .  This solution has the additional 
useful feature that the energy inside the black hole sums 
correctly to M. The result is the metric 

I 1 - (r/2M)2 r < 2 M  
1 - 2 M / r  r > 2 M  (43) 

shown in Fig. 1. It corresponds physically to a vacuum 
vessel containing a region of space-time with a positive 
cosmological constant. Note the similarity to Fig. 3. 

The singularity at the event horizon corresponds to 
a negative surface tension or stress required to contain 
the negative pressure inside the black hole. It may be 
seen from Eqs. (39) - ( 41) to show up only in the 
22 and 33 components of the Einstein tensor. A bal- 
loon with &e tension 7 filled gas at pressure P 
will acquire a radius r satisfying 7 = rP/2. Similarly 
the black hole with local pressure P = -3c"/32nG4M2 
in proper coordinates inside must have surface tension 
7 = -32/32?r@M at the horizon in proper coordi- 
nates. This tension is generated by the space-time itself 
as it undergoes the transition between its two phases and 
thus need not be constrained by the properties of any 
familiar kinds of matter. However, it is actually quite 
smd.  To see this let us imagine emulating the stress 
by generating thermal photons at infinity and allowing 
them to fall down on the black hole. The light pressure 
in proper coordinates at the horizon is formally divergent 
because of the gravitational potential. However, this is 
false pathology because proper coordinates do not make 
physical sense at the horizon. Per Fig. 7, the light pres- 
sure measured in proper coordinates far away from the 
black hole is actually finite. The cosmological constant 
pressure in these same coordinates is zero at the horizon. 
It is thus always negligible compared to any background 
thermal radiation pressure. 

If the event horizon is indeed a critical surface then 
its heat capacity measured by distant observers is finite. 
With wq defined as in Eq. (16) with u, = cy1I2(r) we 
have for the the total energy per bosonic degree of free- 
dom inside the event horizon 

- l . l  { [s(--+3] 4?r 2GM ["W]}E . 30 kBT 

Thus the heat content of the black hole is N M$/kBT 
times the volume of empty space of the same radius. This 
may also be written E = 7.6 x M ~ ( T / T H ) ~ ,  where 
TH = h 2 / 8 x k ~ G M  is the Hawking temperature. 

VIII. DISCUSSION 

The resolution of the black-hole paradox we have pro- 
posed here conflicts fundamentally with the relativity 
principle, in that it requires quantum gravity to have a 
mass scale M that can be measured. If such a scale exists 
at a black hole horizon then it must exist in asymptot- 
ically flat spacetime as well and correspond to an ab- 
solute velocity scale at which a particle gains mass and 
loses integrity. This is not so different from the effects 
of a new elementary particle at. this soale, except that 
decays normally forbidden by relativistic kinematics, i.e. 
one photon going to three, become possible. No such 
scale has ever been observed. However the idea that Ein- 
stein gravity is emergent in the sense we describe is in- 
herently falsifiable. The relativity principle itself must 
break down at sufficiently high energy scales, and this 
breakdown must show up experimentally as spontaneous 
decay of bosons, such as photons, that otherwise should 
have integrity. This might have observable effects on the 
highest-energy cosmic rays. 

Our theory also predicts that black holes have specific 
spectroscopic signatures that can be observed from out- 
side the horizon. By analogy with Fig. 5 we expect the 
horizon to be highly reflective to light of frequency less 
than c times the black hole radius and to transmit light 
slightly above this frequency in resonances that depend 
on the angle of incidence. In terms of the planck mass 
Mp = (tiC/G)'12 = 2.18 x gm and the mass of the 
sun Mo = 2 x gm we have 

(45) 
M 

T o = - =  2GM ( - x 1.00 x 10-5 sec 
d M o  

Qo = E = ,/- x 6.47 x 1013 cm-' . (46) 
MP M 

Thus if M is comparable to the planck mass then the 
transverse momentum Q of an incoming photon will al- 
ways be small compared with Qo unless its energy far 
from the black hole exceeds hcQ0 = 1.28 x log eV. This 
implies that the reflectivity of Fig. 5 is a fairly apt de- 
scription of what one would see for a cold solar-mass 
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black hole. Both the reflection threshold and the trans- 
mission resonances would be in the radio near los sec‘l . 
The reflectance edge is similar to a classical effect caused 
by the convergence of the radial mrdinate2sj but the res- 
onances have no classical analogue. By analogy with the 
inelastic scattering of high-frequency sound from a crit- 
ical surface, we expect that high-frequence electromag- 
netic radiation will be inelastically backscattered from 
the event horizon with a characteristic spectrum termi- 
nating at a red shift of 90% for normal incidence. Exactly 
how high the energy must be for this process to be ef- 
ficient depends on the matrix element for decay. If we 
assume the latter to be set byplanck units also, then 
we have TO/T N ( E l h c Q ~ ) ~  . Tfis implies that the pro- 
cess is efficient only for hard gamma rays, and that most 
photons with energies less than loQ eV pass through the 
horizon without decaying. Once on the other side they 
refract away from the center of the black hole, as in a 
defocussing lens. 

We also expect the black hole horizon to be a ther- 
malizer of radiation and to be itself a thermal body with 
a finite positive heat capacity measured by an observer 
at infinity. This heat capacity is comfortably small for 
astrophysical objects. Rewriting Eq. (44) as 

M M  T -- - 3.24 x (-)(-)2(y)s , (47) E 
MC2 Mp M a  1 K 

B e  
wg&at that if M is the lanck mass then the heat con- 
te& of a solar-mass black R ole becomes comparable to its 
mass when T - lo6 OK. This implies that the tempera- 
ture of a solar-mass black hole might well be sufficiently 
high (> lo3 OK) to make it visible against the cosmic 
microwave background. 

The specific metric we propose identifies the second 
phase as de Sitter space and its distinguishing charac- 
teristic as a nonzero cosmological constant. However, it 
is arguable that the key distinguishing characteristic is 
not the cosmological constant, per se, but topology. The 
cosmological constant we find depends on the black hole 
mass and becomes Unmeasurably small when the latter 
is large. The horizon is effectively planar in this limit, 
and the two phases locally indistinguishable. However, 
one can see from Figs. (2) and (3) that exactly the same 
thing occurs at the liquid-vapor critical point. The liq- 
uid and vapor sides of the transition are distinguished 
only in how the critical equation of state eventually d e  
viates from symmetric inflection, which is a global prop- 
erty. However, one can imagine resolving this problem by 
eliminating the earth’s gravitational field in Fig. 3 and 
substituting the field due to self-gravitation of the fluid. 
Then “down” is determined by the center of gravity of 
the fluid, the critical surface is a sphere, and the two 
phases are distinguished as a practical matter by which 
is inside the sphere and which outside. 

While we cannot rule out on any technical grounds 
the possibility that the transition is first-order we find 
it highly unlikely because it would require th&he met- 
ric Babe discontinuous. Referring to Fig. 2, we see that 

perturbing the critical equation of state downward causes 
the susceptibility of the soft excitation - in this case sound 
- to become negative, so that density perturbations of 
the uniform state grow. The uniform state is thus ab- 
solutely unstable to a nonuniform one characterized by 
position-dependent density. The relevant soft excitation 
in Einstein gravity is a gravity wave 

If this excitation were to become unstable in the same 
way it would generate a nonuniform metric with sharp 
jumps analogous to the density jumps at liquid-vapor in- 
terfaces discussed in Appendix A. This would be a much 
more violent breakdown of classical general relativity, 
and in particular could not be interpreted as interface 
stress-enetgy. 

Regardless of whether it the event‘horizon corresponds 
to a fist- or second-order phase transition, identifying 
the space-time of a black hole as a quantum ground state 
resolves the information paradog6. The horizon does not 
destroy quantum information but rather makes entropy 
the same way black paint does, i.e. by scattering the en- 
ergy into a thermodynamically large number of degrees 
of freedom. This is conceptually similar to the quantum 
holography ideas27, except that the relevant degrees of 
freedom are collective in nature rather than fundamen- 
tal. Also, we fhd that t h e w  vacuum beyond the hori- 
zon is locally identical to the one we know and can be 
probed experimentally from the outside. Insofar as string 
theory predicts something else, the two theories can be 
distinguished from each other by experiment. 

Our picture for black hole is also fundamentally differ- 
ent from the classical one, in that we find quantum effects 
determine both the nature of the event horizon and the 
interior spacetime, even in the case of macroscopic black 
holes. The possibilities for falsifying our predictions and 
thereby demonstrating the quantum nature of black holes 
is, of course, most exciting. 
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pFg%%iX A: MAXWELL CONSTRUCTION 

The Maxwell construction of the zero-temperature 
equation of state shown in Fig. 2 comes from the con- 
dition that the superfluid order parameter be extremal 
across the liquid-vapor interface. As is the case at  finite 
temperature the end points of the Maxwell loops have 
identical pressures P and chemical potentials: 
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Let us now solve 

across the interface. Multiplying both sides of the equa- 
tion by d$/dz we obtain 

Integrating this by quadratures we then generate the den- 
sity profile shown in Fig. 8. Eqs. (Al) and (A2) guaran- 
tee that the profile approaches 1/11 and 1/12 asymptotically. 
Deep in phase 1 we have, with $ = $1 + 6$, 

and thus 

The sign is picked to make 6$ vanish away from the in- 
terface. Doing this for side 2 as well, we see that the 
thickness of the interface region is essentially SI + &2 and 
diverges at the critical point. 

The surface tension is obtained by computing the total 
energy and subtracting off the energy one would obtain 
in the limit of h + 0 or M 3 00, when the interface be- 
comes sharp and the energy comes entirely from U($ t )  
and U(1/1;). Let $0 denote this solution. Then the chemi- 
cal potential p must be the same for $0 as it is for 1/1 since 
the values of the two much match far away from the inter- 
face. The pressure P is also be the same because neither 
$0 nor $ has a gradient away from the interface. We also 
have 

cL - $ ~ ) d z  = 0 (A81 

because the number of particles in the two states is the 
same. Now using Eq. (A5) to eliminate U from the 
expression for the energy difference, we obtain 

Thus the surface tension is twice the kinetic energy per 
unit area. 

0.81 I I I 

-4 -2 0 2 4 
z 

FIG. 8. Order parameter a function of position across 
the liquid-vapor interface for the equation of state of Eq. (6) 
with the values 27bc/8a = 0.9,0.99, and 0.999. As the critical 
value 1 is approached the density jump across the interface 
collapses to zero and interface width diverges. 

APPENDIX B: REFLECTION COEFFICIENT 

With momentum Q in the plane of the interface, Eq. 
(30) becomes 

a2 
az 82 8 9  

w24 = (-Lz2a + z2Q2)4 + (-- + Q2)24 . (Bl) 

We eliminate the solutions of this equation that diverge 
as exp(z2/2) by requiring #(z) to have a fourier trans- 
form. This satisfies 

w 2 i  = [-%(q2 a + Q2)% a + (q2 + Q2)’]6 . (B2) 

For Q # 0 this equation is regular at the origin and is 
easily solved numerically. The first 10 energy eigenfunc- 
tions for the case of Q = are shown in Fig. 9. As 
Q becomes smaller and smaller the nodes of the wave- 
function are pulled into the origin. In the Q + 0 limit 
the equation becomes singular at q = 0 and is no longer 
required to be analytic there. Thus we consider a wave- 
function that is zero for q < 0 and 6 = anqn+” for 
q > 0. This satisfies the equation when 

For w < 1/2 there is no normalizable solution. For w. > 
1/2 on the other hand, there is always one normalizable 
solution formed by subtractkg the expressions for the 
two allowed values of u, namely 

Only the behavior of this function near q + 0 is needed 
for computing the reflectivity. For large positive z we 
have 
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For negative z we have t$(z) = -+*(-z). The real and 
imaginary parts of.t$(z) are separately solutions, and we 
may combine them to make a wave with no incoming 
component on the right side of the barrier. jRom this 
we obtain the reflection and transmission coefficients 

where a = d-4. 

10-6 10-4 10-2 loo 
q 

10-6 10-4 10-2 1 
9 

FIG. 9. Even (top) and odd (bottom) energy eigenstates 
The corresponding of &. (B2) for the case of Q = 

eigenvalue are shown in Fig. 5. 

The resonant reflection spectrum one would actually 
measure is quite sensitive to details of the experiment 
and cannot be computed without further assumptions. 
For the purposes of constructing Fig. 5 we assumed a 
simple barrier with tunneling matrix elements increasing 
slowly with the number of nodes in the wavefunction and 
a constant density of states at infinity. Denoting this 
density of states, times the square of the scale of the 
tunneling matrix elements, by t ,  we have 

where 

. (B10) m N 

G2 = G& = C ( - l ) "  
(W - Wn + iq) n 

Fig. 5 was generated using t = 0.01 and N = 20. 

APPENDIX C: POLARON RADIATION 

The linearized equations of motion for $ = $0 + a& + 
i(ah in the presence of a weak potential V(r, t) are 

a ( J $ R )  ti2 ti- = - - V ( d h )  at 2M 

ti2 2B -h- a(sqf) = --V2(6&) + -((a&) + V$O . (C2) 
dt 2M P 

The corresponding classical Hamiltonian is 

Fourier transforming the equations of motion we obtain 

For the static potential V(r, t) = V0a~6~(r) we have 
2d40a3d(w), which gives 6$1 = 0 and 

= 

e*' dr 
Voa3 $0 1 

( 2 ~ 1 3  J ti2q2/2M -i- 2B/p 
d&(r) = -- 

The amount of fluid accumulated is thus 

For the time-dependent potential 

V ( r ,  t )  = h a 3  d3[r - ro(t)] + d3[r +ro(t)]} , (C8) 

where ro(t) = (t?/2)[cos(wot), sin(wot), O] and woe << u,, 
only the quadrupole terms survive in the far field, and 
we have 

I 
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where x = 2uo(r/u, - t) - 4. The radiated energy flux 
is then 1996). 

of Criticnl Phenomena, (Taylor and Rancis, Bristol, PA, 

22 S. Sachdev, T. Senthil, and R. Shankar, Phys. Rev. B 60, 
258 (1994); S. Sachdev, Quantum Phase %nsitions (Cam- 
bridge U. Press, Cambridge, 1999), p 214. 

23 C. C. Grimes and G. Adams, Phys. Rev. B 45,2035 (1992), 
and references therein. 

'' A. S. Eddingtpn, The  Mathematical Theory of Relativity 

26 R. H. Price, Phys. Rev. D, 2419 (1972). 
26 G. Chapline, in Foundations of Quantum Mechanics, ed. 

27 L. Susskind, Phys. Rev. Lett. 71, 2367 (1993). 

(clo) - @ ( v 0 a ~ + 0 e ~ 4 ) ~  sin4(e) 
ds1 - 32.rr2Mu: 

Combining this with Eq. (C7) we obtain finally 

(Me";)2 1 (Cambridge U. Press, London, 1965). 
- p2)2dp ('11) P, 

MP,s 

per l3q. (37). by T. D. Black et al. (World Sci., Singapore, 1992). 

G. 'tHooft, Class. Quant. Grav. 16, 3263 (1999). 
S. Hawking, Phys. Rev. D 14, 2460 (1976) 

nomena,'' Phys. Rep. (in press) [gr-qc/O005091]. 

G. Chapline, Mod Phys. Lett. A 7, 1959, (1992). 
W. G. Unruh, Phys. Rev. Lett. 46,1351 (1981). 

7T. A. Jackobson and G. E. Volovik, Phys. Rev. D 58, 
064021; ibid., "Effective Spacetime and Hawking Radia- 
tion from Moving Domain Wall in Thin Film of 'HeA", 

L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys. 
Rev. Lett. 85,4643 (2000). 

'M. Mohazzab, "Second Sound Horizon," J. Low Temp. 
Phys. (in press). 

lo M. Ueda and K. Huang, Phys. Rev. A 60, 3317 (1999); 
A. Eleftheriou and K. Huang, "Instability of a Bose- 
Einstein Condensate with Attractive Interaction," [cond- 
mat/9908229]. 
M. R Andrews et al., Phys. Rev. Lett 79, 553 (1997). 

ford U. Press, New York, 1994). 
N. N. Bogoliubov, J. Phys. U.S.S.R. 11, 23 (1947). 

" M. D. Miller, L. H. Nosanow, and L. J. Parish, Phys. Rev. 
B. 15, 214 (1977). 

"A. Gammal, T. h.ederico, L. Tomio, and Ph. Chomaz, 
Phys. Rev. A 61,051602(R) (2000). 
S. Inouye et aL, Nature 392, 151 (1998); J. Stenger et al, 
Phys. Rev. Lett. 82, 2422 (1999). 
S. L. Cornish et al., Phys. Rev. Lett. 85, 11795 (2000). 

'' K. Huang, Statistid Meehanies (Wiley, New York, 1963), 
p. 40. 

lS V. L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 
34, 1240 (1958) [Sov. Phys. JETP 7, 858 (1958)]; L. V. 
Pitaevslcii, ibid. 40, 646 (1961) [ ibid. 13, 451 (196l)l; E. 
P. Gross, J. Math. Phys. 4, 195 (1963). 
L. Landau, J. Phys. U.S.S.R 5, 71 (1941); I. M. Khlalat- 
nikov, An Introduction to the Theory of Superfluidity, (Ben- 
jamin, New York, 1965), p. 53. 

21 H. E. Stanley, Introduction to Phase I)nnsitions and Crit- 
id Phenomena, (Oxford. U. Press, New York, 1971); C. 
Domb, A Historical Introduction to the Modern Theory 

' G. E. Volovik, "SuperfKuid Analogies of Cosmological Phe- 

'A. Sakharov, Sov. Phys. Dok. 12, 1040 (1968). 

[gr-g~/9811014]; G. E.Volovik, JETP Lett. 69, 705 (1999). 

I2 H. R Glyde, Ezeitations of Liquid and Solid Helium, (Ox- 

11 


